Book Review: P53: The Gene That Cracked the Cancer Code

Pinterest LinkedIn Tumblr +

P53 tumour protein_oncology news australiaBy Sue Armstrong – The Guardian.

Hopes surround the protein that suppresses tumours – but what about Big Pharma?

“A cure for cancer” – the phrase is so often repeated, surely it must finally materialise? To anyone not familiar with the developing story of cancer research, the position seems tragically unsatisfactory. Billions of pounds and decades of work by thousands of researchers have produced much better prognoses for some cancers, but harsh forms of chemotherapy and radiotherapy are still the standard treatment and the much sought-after magic cure remains tantalisingly out of reach.

As Sue Armstrong points out at the beginning of her book, while we may naively wonder why so many people get cancer, researchers are asking “Why so few?”. Every time a cell divides – skin and digestive-tract cells are constantly proliferating – there is a possibility of genetic errors. For cancer to develop, it requires the control mechanism in just one cell to be thrown into disorder, resulting in unlimited replication of that rogue cell. Considering the stupendous number of cell divisions occurring in the human body the development of cancer is rare. Scientists have long suspected that there is a very powerful protective mechanism at work.

P53 (the name refers to a protein of molecular weight 53 kilodaltons) is the cancer prophylactic for most multicellular organisms; it has been dubbed the guardian of the genome. While cancer has many causes and can be insidiously malignant throughout the body, p53 is the single most unifying factor in the disease: for most kinds of cancer to develop, p53’s suppressor activity has to have been disabled.

It has taken scientists a long time to establish some of the basic facts about cancer. In 1911 the pathologist Peyton Rous reported a virus that caused cancer in chickens. For decades this finding was dismissed: cancer, according to the official line, could not be caused by a virus. Rous lived long enough to see Francis Crick and James Watson’s double helix structure of 1953 establish DNA’s role at the heart of life and for his own theory to be subsequently vindicated; he received the Nobel prize in 1966 for his pioneering work…read more.


About Author

ONA Editor

The ONA Editor curates oncology news, views and reviews from Australia and around the world for our readers. In aggregated content, original sources will be acknowledged in the article footer.

Comments are closed.