New device could analyse biopsy and help diagnose pancreatic cancer in minutes

Google+ Pinterest LinkedIn Tumblr +
This prototype of a microfluidic device has both curved and straight channels for transporting tissue biopsies. The silicon material is lightweight, flexible and transparent. Photo: University of Washington

This prototype of a microfluidic device has both curved and straight channels for transporting tissue biopsies. Photo: University of Washington

Source: University of Washington – Michelle Ma.

University of Washington scientists and engineers are developing a low-cost device that could help pathologists diagnose pancreatic cancer earlier and faster.

The prototype can perform the basic steps for processing a biopsy, relying on fluid transport instead of human hands to process the tissue. The team presented its initial results this month (February 2014) at the SPIE Photonics West conference and recently filed a patent for this first-generation device and future technology advancements.

“This new process is expected to help the pathologist make a more rapid diagnosis and be able to determine more accurately how invasive the cancer has become, leading to improved prognosis,” said Eric Seibel, a UW research professor of mechanical engineering and director of the department’s Human Photonics Laboratory.

The new instrumentation would essentially automate and streamline the manual, time-consuming process a pathology lab goes through to diagnose cancer. Currently, a pathologist takes a biopsy tissue sample, then sends it to the lab where it’s cut into thin slices, stained and put on slides, then analysed optically in 2-D for abnormalities.

The UW’s technology would process and analyse whole tissue biopsies for 3-D imaging, which offers a more complete picture of the cellular makeup of a tumour, said Ronnie Das, a UW postdoctoral researcher in bioengineering who is the lead author on a related paper.

“As soon as you cut a piece of tissue, you lose information about it. If you can keep the original tissue biopsy intact, you can see the whole story of abnormal cell growth. You can also see connections, cell morphology and structure as it looks in the body,” Das said.

 In this video, tissue biopsies first are seen moving through the transparent channels of a microfluidic device. In the second cut, an optical clearing fluid illuminates the original channels. Moving whole tissue samples through such a device is unprecedented.

The research team is building a thick, credit card-sized, flexible device out of silicon that allows a piece of tissue to pass through tiny channels and undergo a series of steps that replicate what happens on a much larger scale in a pathology lab. The device harnesses the properties of microfluidics, which allows tissue to move and stop with ease through small channels without needing to apply a lot of external force. It also keeps clinicians from having to handle the tissue; instead, a tissue biopsy taken with a syringe needle could be deposited directly into the device to begin processing.

Undergraduate mechanical engineering student Chris Burfeind holds the prototype in the UW mechanical engineering lab. Burfeind built this device using flexible Teflon tubes and a petri dish. Photo: University of Washington

Undergraduate mechanical engineering student Chris Burfeind. Photo: University of Washington

Researchers say this is the first time material larger than a single-celled organism has successfully moved in a microfluidic device. This could have implications across the sciences in automating analyses that usually are done by humans.

Das and Chris Burfeind, a UW undergraduate student in mechanical engineering, designed the device to be simple to manufacture and use. They first built a mould using a petri dish and Teflon tubes, then poured a viscous, silicon material into the mould. The result is a small, transparent instrument with seamless channels that are both curved and straight…Read full article.

 

Share.

About Author

ONA Editor

The ONA Editor curates oncology news, views and reviews from Australia and around the world for our readers. In aggregated content, original sources will be acknowledged in the article footer.

Comments are closed.